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1. INTRODUCTION

The basic purpose of this experiment is to compute reduced
normal equations from the observational data of the South American
Satellite Densgification (PC-1000) Network obtained from the Defense
Mapping Agency Aerospace Center, St. Louis. These reduced normal
equations are to be combined with reduced normal equations of other
satellite networks of National Geodetic Satellite Program [Mueller et
al., 1973] so as to provide station coordinates from a single least
sguare adjustment,

Details of this network, including instrumentation, are given in

Huber [1971].

2. DATA

2.1 Terrestrial Data

Terrestrial data, which include base-lines, heights and sur-
vey coordinates of stations, provide the necessary relative position
constraints between "collocated" stations of BC-4 World-net and the
South-American Densification Net (Figure 1). Survey information
regarding the observation stations is summarized in Table 2.1-1.
Constraints used in this solution are given in Tables 2.1-2, 2,1-3,
2.1-4 and 2.1-5 [Mueller, et al. 1973]. Geoidal undulations
(Table 2.1-5) are computed by using formula and constants as given

in [Rapp, 1973].
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Table 2, 1-1

2 GEODETIC CODRDINATES OF THE INSTRUMENTAL REFERENCE POINT {OPTICAL/ELECTRONIC CENTERGETC.)

CN THE LOCAL GEODETIC DATUM

3 MEAN SEA LEVEL HEIGHT OF THE INSYRUMENTAL REFERENCE POINT

4 HEIGHT OF INSTRUMENTAL REFERENLE PDINT ASOVE SURVEY MONUMENT

5 SOURCE CODE

1 =
2 -
3 —

MOTE : ZERO

1CSC,1971)

[CSC,1972/73)
{HUBER,1971)

IN THE LAST DIGIT MAY INDICATE THAT THE DIGIY IS UNKNOWN.

SURVEY INFORMATION OF ORSERVATION STATIONS
I STATION | DATUM| SURVEY COORDINATESZ | wust3 | INSTR. f  INSTR. |SCURCE!
i L 4] : - | | HEIGHT?| i gl
1 Noo ) NAME 1 cooE' | LATITYDE LONGITUDE [ELL. HEH) | (M) It | TYPE | cope™t
| I | | i | | i | i
| 32606 | CURACAD P41 | 12 5 264843 291 9 45.803 | . 4.0 | 6.63 | 1.25 | PC=l000 [ 1 |
] 3507 | TRINIDAD boel | 10 44 35,844 298 23 254652 | 237.0 | 256.20 | 1.25 | PC-1000 | 1 |
] 3413 | NATAL ] 4l 1 -5 S& 56.253 324 49 BT .05 i 63,0 | 35.90 | % | PC~1000 | 1 |
] 3414 | BRASILIA [ 41 1 -15 51 35,540 312 6 2.679 | 1059.0 | 1058.25 | 1l.14 | PC-1000 | 2 |
| 3431 | ASUNCION b4l | -25 18 56,192 302 25 15.376 | 1620 | 149.7% | 1.65 | C~1000 [ 2
| 3476 | PARAMARIBD 1 &1 | 5 26 56,645 304 4T 464226 | Beb6 | 18427 | 1.25 | PC-1000 | 1 |
{ 3477 | BOGOTA [ 4l | & 49 2,379 285 55 35,482 | 2586.0 [ 2557.90 | 1.25 ( PC-1000 { 2 |
| | ] | | | I | | |
{ 3473 | MANAUS ] « | -3 8 44,820 300 0 59.620 * i 83.60 | * { epC-i060 | a
| 2498 { aQulTo [ 41 | =0 5 50.468 281 34 49.212 | 270646 | 2681.80 | = t Pc-l000 { 1t |
I 6002 { BELTSVILLE b 29 ( 39 1 39,003 283 10 26.942 | 45,0 | 44430 | 1.50 | BCw4 I 1
| 6008 | PARAMARIBO I &1 | 5 26 55.325 304 47 42.832 | e | 1Be38 | 1.49 | BC=4 It |
| 6009 { QuiTO | 41 | =0 5 80,468 281 36 49.212 | 2706.7 | 2682.10 | 1.50 | 86=4 T
| 019 | VILLA DOLUORES {61 | =31 56 33.954 294 53 41,342 | 421.0 | 608,18 | 1.50 | BG4 P2 |
| 067 | NATAL i 41 | =5 55 37.414 324 50 6.200 | 6647 | 40,63 | % | BC-44 [
] | I | | [ I | I 1
! | f i | ! ! | ' I
%  INSUFFICIENT DATA
1 DATUM CODE :
29 == NAQ 1527
41 == SAD 1949



Table 2.1-2

Relative Position Constraints

. Relative Coordinates (Meters) Weights
Stations (1 /0‘2 )
Au Av Aw
3413-6067 ~-48,64 ~289.13 1258. 05 3.00
3476-6008 36.31 22,94 -20,80 3.00
3499-6009 0.00 0.00 0.00 100. 00
i .
Table 2.1-3
Station Position Constraints
Station Coordinates (Meters) Weights
Stations
u v w By Py Pw
6002 1130 764.85 [-4830 831.87 | 3994 704,05 | 0.2415] 0.3495 0, 2725
6008 3623 241.00 [-5214 233.74 601 536.05 | 0.2212| 0,2591 0.1163
6009 1280 834.24 |-6250 955.94 -10 800.59 | 0.0776| 0.0852 0.0593
6019 2280 627,09 |-4914 543,17 | 3355 402.77 | 0.1779] 0.1366 0.0741
6067 5186 397.12 [-3653 933.25 | -854 276.92 | 0.2315| 0.2160 0. 1464

Weights (*/o ®) based as per variances obtained in OSU WN14 Solution [Mueller
et al., 1973]
4



Table 2.1-4

Chord Constraint

6
Station-Station | Chord Distance jox 10
{(Meters)

6009-6067 4734 132.44 1,00

The chord length and the sigma were computed from the adjusted co-
ordinates of the stations from OSU WN14 Solution [Mueller et al., 1973]

Table 2.1-5

Geoidal Undulations and Heights Used in the Constraints

STATION NREF® |HCONSTR? *Hcoy-
STR
NO. NAME _ (m) {m) {m)

3406 | Curacao ~29.19 41,02 | 4.0
3407 Trinidad -38.57 194,88 |} 4.0
3413 Natal ~12.03 -5.87 | 6.0
3414 Brasilia -9.88 1021.,23 6.0
3431 Asuncion 11.98 137.72 6.0
3476 Paramaribo ~-28.31 -34.02 6.0
3477 Bogota 10,71 2551.44 6.0
3478 Manaus -7.17 53.63 6.0
3499 Quito 16,73 2682.74 6.0
6002 Beltgville -36.90 ~6.73 2.5
6008 Paramaribo -28.31 -33.91 4.0
6009 - Quito 16.73 2683.04 6.0
6019 Villa Dolores 22,80 609.43 6.0
6067 - Natal -12.03 -2.14 6.0

1. From [Rapp, 1973]

2., HCONSTR = MSL+NREY¥+ AN, where AN is a correction term for the dif-
ferences of position and size of the ellipsoids used [Mueller et al., 1973]

3. Used in Computing the Weights of the Height Constraints



2.2 Satellite Observational Data

Data of South America Densification Net was obtained from the
Defense Mapping Agency/Aerospace Center, St. Louis, Missouri. This
data, which is a punched card-deck, is used without any modification.

No major blunders are detected. (See Table 2.2-1)

3. THEORETICAL BACKGROUND
3.1 Normal Equations for Optical Observations

A set of reduced normal equations of the form

NX + U= 0
is obtained from the optical observations. The symmetric coefficient matrix
is composed of 3 x 3 blocks of the form [Mueller, 1968]
ﬁkk = JEMR’; - ?Mkdl (‘?Mihi Mk; + Py

3X3

Ne, = -ZMyy M) M,
3x3 3 H

where
Mgy = By PI.;:L Bi;
1 0 0
Byy = 8Rs (-&) Ry (-90° +8) |0 -cosb 0
0 0 -1
8 = Polar motion matrix
and
K1 Denotes particular ground stations
3 Denotes particular simultaneous event
1 Denotes any ground station participating in an event
12 Is the summation over all ground stations involved in event j
52 Is the summation over all events observed by ground station

k¥ and/or 1

aPka Weight matrix associated with any particuiar ground siation
X

;Pi 3 Weight matrix of any observed direction
X



Table 2.2-1

Summary of Simultaneous Observations by Line (SA Network)

Line

Station-Station‘

No. of Pairs

Line

Station-Station

Mo. of Pairs

6002-6008
6002~3406
6002-3407
6002-3476
6002~3477
6008-6009

6008-6019

6008-6067
6008-3406
6008-3477

6008~3478
6009-6019
6009~3406
6009~-3407
6009-3476
6009-3477
6009-3499
6019-6067
6019-3406
6019-3407

6019-3431
6019-3476
6019-3477
6067-3407
3406-3407
3406-3413
3406-3414
3406-3431
3406-3476
3406-3477

3406-3478
3406-3499
3407-3431
3407-3476
3407-3477
3407-3478
3413-3414
3413-3431
3414-3431
3476-3477

3477-3478

3477-3499

14

4
16
19
23

g
29

2
22
15

2
5




Finally, the vector of constant terms is expressed by
T =TMs X2 - CM ) IM,) X3
) 1 H
where as usual, the superseript (°) denotes initial approximate values.

3.2 "Constraints' Contributions to the Normal Equations

3.21 General

Since the coefficient matrix of normal equations is singular, a unique
least squares solution is not poss_ible. A minimal set of constraints to the
normal equations provides a unique solution [Blaha, 1971].

Two alternative definitions exist for the term "constraints". The
absolute constraints represent certain conditions which have to be fulfilled
exactly and with no uncertainties while the relative constraints (or weighted
constraints) have the same characteristics as the observations.

In general the contribution of the functional constraint equations

GX,L.) = 0
to the normal equations can be found by bordering the normal equations matrix
N ¢ x| .U G
C -P&l X. | we = 0, where C = “—“&—.
After elimination of K, it is easy to find
[l_\—l + C'P. C]X-FE + C'B W = ¢
or
IN + NJX+U + U = 0 (1)

where N° and U° are the contributions to the coefficient matrix and constant
vector of the normal equations due to the application of constiraints. The
quantities N and U correspond to the original normal equations without con-
straints (Section 3.1).

After the constraints are added the normal equations will take the
usual form

NX + T =0
and we are in the position to obtain the contribution from a new set of

constraints,



Constraints can be applied between two station k and 1 or to a single

station. The contribution of these constraints to the matrix N (3 x 3) blocks)

and U (3 x 1 blocks) can be schematically expressed in two different ways.

Assuming that the matrix P. is always diagonal it is possibie to

express:

(@) Contribution to the normals due to the constraint applied to station k

Py

Ck

(b) Contribution to the normals due to the

Pe

Ck

Gy

h

&) 2
Nik

i
Ny

We

HREE

il

(22)

constraint between stations k and 1

P, Cy Nk, = C; b, C,
1
P, W% Ul =C, P, W°

(2b)

These blocks obtained as indicated above for the corresponding case

will be the only cnes computed and added to the original normal equations as

expressed by formula (1).



3.22 Relative Position Constraints

Relative position constraints are used in order to combine the normal
equations - obtained from various satellite nets and to constrain '"double" sta-
tions or closely situated stations of the same net. The expression for the
combination of normals can be written as follows:

N+N]X+T+U" =0
where N* and U*’ computed from (2a), (2b), are the contribution to the ori-
ginal normal equations (NX + U = 0).

If the relative position (8u®, Av®, Aw®) of two stations is known,
along with the standard deviation of these relative positions, the constraints

can be formeéd. In this case the functional constraint equations are

ug - uf = Ad°
ve - vy = &Y°
wo - w = Aw°
Therefore
Cg =1 ; C) = -I
3IRE 343 aL3 3%2
and
Ul =0 UT = 0 because W' = Gf {'XO,LS) =0
3K1 3%
where
1 0 0
Oiuo
P = 0 ! 0
A
0 0 :
2
U'AWO

10



and

kk =1 Bl = By
3x3 3x3
Ny, =1 RI= B
3x3 Ax3

N: =N« =1R (- = -R

3x3 3x3 ax3

Thus, the diagonal elements of By are added tc each element of the diagonal
of the blocks kk and 11 of the matrix of the combined normals N, and sub-
tracted from the diagonal elements of the blocks k1 and 1k of N. There is

no contribution to the vector U.

3.23 Length (Chord) Constraints

Chord constraints are introduced when scalar information is avail-
able between grdund stations (e.g., distances determined through high pre-
cision geodimeter traversing). The functional constraint equation in this case
is

¢ (X, Le) =0

or a1
2

I - w)® + (w - i + (e - wi)] = Lk, 3)
Cﬁ - lf = ui ’ vf - V? . we - “ﬁ
1x3 Ifl 1;1 Ifl

and
Cﬁ _[‘£ - ug ’ E; - VT ’ WE _'Wi]

1x3 Iﬁl I;l I:l
and
02
B - *! = _variance of the chord
o3 a priori variance of unit weight

Then the contribution to the normals are obtained by applying (2a) and (2b)

11



as under:

Nix = (Ci)' P Cx
3x3
N, = () R G
Ny = iy B G
3x3
® = (@b W
3x3
W = ()R W
3x3

The first three expressions in the above are added respectively to
the blocks Ngx, N;; and Ni; of N; the last two expressions are added

respectively to the constant vectors Ur and U, of U.

3.24 Station Position Constrainig

Station position constraint is used for the purpose of defining the
origin of the coordinate system. If the station coordinates (w, v¢, w¢) of
station k are to be constrained and if the computed (known) variances of its
known coordinates are cr;(,, oi o o iﬁ’ then the equations given in section
3.22 are valid by merely deleting the terms with index 1, i.e., Au’ = uf,

Av® = v.®, Awi = wi. Hence

Nix =1IP, I=DP

3x3 553
where _
g 5 0 0]
Uk
1
Ps = 0 0,50 0
Vi
R
0 0 020
Wik
L =

12



3.25 Height Constraints

If the geodetic (ellipsoidal} heights H¢ of the station x is to be con-

strained, then

H ] H
NKK = (CK)' PH CK
axa
where
Cf = [cosof cosAé, cospf sinAf, singd]
1z3
and
1
P = —=
Ok

Here @f and A{ are the approximate geodetic coordinates and cl‘ﬁK is the

variance of the height for station x.

The constant vector Uy can be computed from

Uy = @Y B W
where

W' = H¢ - H?, H{ being the approximate height.

3.26 Inner Constrainis (Free Adjustment)

Even though the selection of a coordinate system is arbitrary in the
case of a minimum constraint adjustment, e.g., in the case of ranging, the
selection of the six coordinates (at more than two stations) to be constrained
is very critical, since one set of constraints would give a different solution
than another set. The 'best" solution is arrived at in a coordinate system
defined through the use of a set of constraint equations called "inner'' con-
straints [Rinner et al., 1967]. In this sense, 'best" means resulting in
the smallest covariance matrix for the unknowns. Covariance matrices may
be compared by means of their traces, and the inner constraint eguations
are characterized by the property that the trace of the covariance matrix
obtained with their use is a minimum among those obtained by adjusting a
given set of observations augmented by a minimal set of constraint equa-

tions. This property also implies that the mean square uncertainty of the

13



unknowns is smaller when the inner adjustment equations are used. The re-
sulting adjustment is called a "free" one. The functional inner constraints
equations can be written as

c'X = 0
where X is the set of corrections of the approximate coordinates of the un-
known points and in the most general application when the "best" origin,

orientation and scale are sought

—— I l T ! n

X S T NN N - W S
0w -w : 0 wz Vx|
|
| !

T

C = cti= |[-w§ 0o & ;—wg 0 uy :
: l

S N G N e S I R

| & ] u  ovi owy | u§ vE wE | |

N L

The symbols (uj, vi, w?) denote the approximate coordinates of the ith
unknown point where both the ground points and the satellite positions are

congidered.

It is also possible to design a set of constraints that willv result in
the "best" solution for only a subset of the points. In the adjustment
reported here we were only interested in the gound station unknowns imply-
ing that the trace of only that portion of the covariance matrix correspond-
ing to the ground station unknowns should be minimized, while the variances
of the satellite position unknowns should not be included in the minimum sum.
The constraint equations that will produce such a solution have the same
form as those producing the 'best' solution for all the points; however,

3 x 3 blocks of zeros are inserted into those positions of I which corres-
pond to unknowns whose variances are not to be included in the minimum sum.

The inner adjustment constraint equations can be given a geometrical
interpretation that appeals to intuition. Let X{ denote the set of approxi-

mate coordinates of the ith unknown point, dX; denote the corrections to

14



these coordinates, and X, dent?te the adjusted coordina.tes, i.e.,

Xy =X +dX,
The first set of constraint equations, C"EX = 0, is then equivalent to the
get of conditions

:dei =90
The geometrical interpretation of these conditions is that the center of
gravity of all the points will not change after adjustment, i.e.,

z:x‘{ X dX1-= 0

¥ the center of the system remains fixed, then the cross products Xi x dX;
refieet rotations: of the points'éround the fixed center. These constraint
equations insure that the sums of the rotations around all three coordinate
axes are zero. The corresponding geometrical interpretation is that the
mean orientation of the system of points will not change after adjustment
either. | - " '

Thus, the respective equations CiX = 0 and C%X = 0 effectively
specify the origin and the orientation of the a.djustmeﬁt coordinate system.
A third 'inner adjustment" equationlCaIX = 0 gpecifies the scale of the
gsystem. However, this' scale eguation is only used when the observations
themselves do not determine the scale.

A more complete description of the inner adjustment is described
in [Blaha, 1971]. | |

In summary, if the normal equations with the contribution of all the
constraints (except inner constraints) afe represeﬁtéd by

M+N + N +8 +N)X+T+0° +10 0 + 0" =0 (5)
or ; '

NX+U=20
then the inner adjustment can be obtained by bordering the coefficient matrix
N of the normal equations as

N (cty X U

o K 0 | (6)

it

15



Upon the addition of any kind of constraint to the normal equations,
it becomes necessary to consider alse its contribution to & V'PV. The de-
grees of freedom change as well. In order to compute the proper variance

of unit weight the latter must be taken into consideration.

4, THE SOLUTION
Using the specified constraint of Section 3.2, SA-10 solution is com-
puted. A general information of this solution is given in Table 4-1. The
solution is obtained by using the general OSUGOP program (Reilly et al.,
1972].
The station coordinates of SA-10 solution are given in Table 4-2 with

their standard deviations.
Table 4-1

General Information on the SA-10 Geometric Adjustment

No. of cbserving stations 14
- Mca (& priori) ‘ 1.0

No. of degrees of freedom 645
| Tvev 721.76

&a (a posteriori) 2.50

Number of constraints usged:

Relative position constraints 3
Length (Chord) constraint 1
Station position consfraints 5
Height constraints 14

Inner constraint defines the
origin of the coordinate system.

16



Tahle 4-2

Cartesian and Geodetic Coordinates
(Solution SA 10)

Stz. No. u o, v (o8 W Ty

2P Aq Ty
Ay A-b Ty,
e A Te

u, v, W

0;.1 lc‘F 90!‘

U‘p,ol

Ty

8y 3 Aq , Ty

Ay, Ay T

ac’AL‘- s e

Cartesian coordinates in meters (Orientation: u = the Greenwich
meridian as defined by the B.I.H.; v = A = 90° (E}; w = Con-
ventional Imtermational Origin).

Geodetic latitude and longitude in angular units (degrees, min-
utes and seconds of arc) computed from the Cartesian coordin-
ates and referred to a rotational ellipsoid of a = 6378155.00m
and b = 6356769.70 m.

- Geodetic (ellipsoidal) height in meters referred to the same

ellipsoid.
Standard deviations of the Cértesian coordinates in meters.

Standard deviations of the geodetic coordinates in seconds of
arc. :

Standard deviations of the geodetic height in meters.

Altitude (elevation angle), azimuth and magnitude of the major
semi axis of the error ellipsoid, respectively. Angles in de-
grees, magnitude in meters. Altitude is positive above the
horizon. Azimuth is positive east reckoned from the north.

Same as above for the mean axis of the error ellipsoid.

Same as above for the minor axis of the error ellipsoid.

17



Table 4.2 (Con't)

3406 | 2251769,08] 5.57 | -5016902.96
FTUTT 02 6 26457 0u24 | 291 9 43,15

~5,.04 - 5T.03

19,77 m62.24
3607 29796R0.54 T.18 ~5513533,.18
10 44 35.20 0,20 298 232 23.08

~3.40 118.77

20.28 30,03

-69 41 19.66
3412 5186345.51 2«00 =2654216.56
- 5 54 57.55 0.09 324 49 55,45

-3.79 2466

"'8055 94.?3

RO .64 69 .95
3414 411497 7.26 T.50 -~4554]124,02
‘ ~15 51 37937 024 31? & De?b

2.88 5G.36

~11.13 -39.07

~78.50 126.06
3431 3093028.20 T.17 =-48T0063 .97
-~25% 18 58,25 0.36 302 25 12.20

~5.20 11.62

~1.83 101,79

—B4 4R ~148 .88
3476 3623275.84 2.14 ~5214208,28
S 26 H2.81 0.9 304 47 41.51

3.15 ‘-6032

10.83 84,28

~T8472 6Te69

18

2.94

B.l6
4.83

3.32 |,

449
0.25

8.31
5.44
3.37

1327210.38 | 7.37
 =AR5,080 | 3453
1181!380(‘3 6.20
185,59 3.71
~653018.68 2a71
-hel6 1.97
—~17T3214% 84 Tel7
1002.05 4,88
=2710839.99 10.51
120,54 4494
601517.56 2aB4
=39 47 1.81




34T

3478

3499

6002

G008

6009

6019

Table 4.2 (Con't)

1744632.76
4 49 0,44

9.75
0,32

~2.76
-43,15
4b T2

3185743.08
= 3 8 43,73

11,19
0.67

-0 019

~21.96

68.04

1260825.47
- 0 5 51.25

2.99
0.13

2.51
10,43
-79.26

2.10
0.06

1130763.54
39 1 39.39

v 1aT9
11.74
~T8a12

3623239459
£ 26 52,49

2.07
0.09

3.29%
11.07
-T8.46

1280825.47
-0 5 51.25

2499
0.13

2451
10.48
~79.22

2280426.58
=31 56 34.95

2+43
0.11

-24.10
~46.19
33.99

~6114278.13

. 285 55 31.56

47.57
140.16
134:.64

~5514590,21
300 0O 53.09

59,85
59,31

. =6250950,21.
281 34 46.84

14,32
104.78
90.96

~4830831.02

283 10 27.00

105.75
15.36
24.27

~5214231.39
304 47 40.11
"5 .65

84.98
68.21

-6250950.,22

281 34 46.B4

14,32
104,78
91.01

-4914540,71
294 53 3B.34
=-D.19

117.61
T2.26

19

532213.19
2542.42

~347640,88
36,97

-10793.24
267643

3994704 ,49
=7.30

601538.31
_39120

=-10793.24
2676443

=3355401,%0
603.72

20.43
5.75



Table 4.2 (Con't)

60467 5186394.24 1.92 -2653929.59 2.03 —654276.72 2ebha
-3.90 3.53 265
"11:21 911131 ?aoﬁ
78.11 T4 .64 1.89

In the tables the rotations 3 ¥, and € are about the w, v, and u
axes, respectively. The scale factor Ais in units of ppm. The unit in the
variance-covariance matrix, for the elements corresponding to the rotations,

is radian squared.

5. COMPARISON WITH OTHER SOLUTIONS

Table 5.1~1 summarizes the transformation parameters between
SA 10 and South American 1969 Datum, and Table 5.1-2 between SA 10
and WN14 Solution [Mueller et al., 1973].
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S5Al10

0,857D+02
0.584D+01
0.1060+02
=~0.447TD-05
0.9670-05
-0,2770-05

~0.126D-05

0.100D+01
0.7300-01
0.,119D+00
-0,4010+400
Q.764D+00
~0.257D+00

-0.105D+00

Table 5.1-1

~-T0- SAD-&9
stk ok o ok of ok bRk kb Aok ok ok ok

SCALE FACTOR AND ROTATION PARAMETERS CONSTRAINED

A ke e e . i S s B . S e o S e Y o B Y T .

e s e s ——— T~ T T T——— A . ¥ "= M . e - o 4 o B = e e oy

(USING VARIANCFS ONLY)

1 SCALE AND 3 ROTATION PARAMETERS

e

ou bv DW DELTA OMEGA PSI FPITLON
METERS HMETERS METERS (X1.D+46) SECONDS SECONDS  SECORDS
59,65 16.52 36.33 5.80 -0.7% 0.12 0.21
VARTIANCE — COVARIANCE MATRIX
1.13
0.5840+01 0.1060+02 -0.4470405 0.967D-05 =-0,.27TD-05 —0,126D-0F
0.749D+02 O0,186D+01 0.738D-0% 0,5640-05 -0,358D-06 ﬁ.130ﬂ—05
0. 1860401 0.922D+02 0.137D-05 0.161D=05 -0,644D0-05 ~D.975D-0F
0.728D+-05 0.137D-05 0.145D~11 0.721D-14 0.31°D-14 0,1100-13
0.564D-05 ©0.1610-05 0,721D-14 O0,1B70~-11 -0,265D-12 —0,1520~12
~0.358D-06 —0.644D-05 0.319D-14 -0.268D-12 0.136D-11 0.440D-12
0.130D-05 —0.979D-05 0.11060-13 -0.1520~12 0.440D-12 O0.1680-11
COEFFICIENTS OF CORRELATION

0.73003-01 0,119D0400 =0.401D+00 Q.764D+00 -0.257D+00 —0.1050+00
0.1000+401  0.224D-01 0.70BD+00 0.4760400 -0,.3550~01 0.1160400
0224001 0,100D+01 O0L,11BD400 (.122D+00 ~0.576D+00 ~0.7T8ED+00
0.708D+00 O.112D0+400 0,100D0+401 ©0.4380-02 0.2270-02 0.7050-02
0.476D+400 0.1220+400 0.438D0-02 0.1000+01 -0.168D+00 =C.8560-01
~0.32550~-01 -0.576D+00 0,227D0-02 -0.168D+00 0.,1000+01 0.2920+400
0.116D+400 ~0,788D+00 0,705D=02 ~0.8560-01 0.292D+00 0,100D+01}
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2414
3431
3477
£008
6009
6019
6067

vii

SA1O

———— e 2 — i ———

-2 «B
-Ocl
0.9
0.3
-0.3
0.5
-N.2

OO N D oa)

wbor DWW

Table 5.1-1 (Con't)

3414
3431
3477
&008
6009
6019
&067

RESIDUALS V

e A S s s e

————— - - - e

_007
-5.9
“18-7
3-8
10.0
Ted
4.1

22

1

\ .
WalbhbaNO

. ° 4 +« 8 o %

WO WO N A

Vi - V2

-2.6 1.2 -11.3
-7.1 9.0 :‘004
-B.7 364 3.1
=12.5 ~4 .0 E.4
l16.4 ~10.9 =5.2
7.1 -7.8 7.8
?-3 "‘!-3 "‘4:0

3.9
14,9
1609
12.5

"19.0
"8-1
_708



Table 5.1-2

SA10 =TO~- WN1g
ko oo e o 2 0 ol o s o 0 o o o ok oK

SCALE FACTOR AND ROTATION PARAMETERS COMSTRAINED

- ———— i Wt ot e e S

B . . e ek e L . e e B i .

SOLUTION FOR 3 TRANSLATION, 1 SCALE AND 3 ROTATION PARAMETERS

i ———— ]~ — " £ S T A

(USING VARIANCES ONLY)}

Dy DV DW - DELTA  OMEGA PST EPSILON
METERS METERS METERS (X1.D+6) SECONDS SECONDS SECONDS
1,63  ~7.78  ~4.92  ~0.44  -~0.13 0.07 0,10
VARTANCE =~ COVARIANCE MATRIX
02 = 0.92
0.3650+401 0.521D400 0.8800400 ~0.171D-06 0,403D=-06 —-0.,3390-07 -0.134D-06
0.521D+00 0,3150401 0,4620400 0,244D-06 0,2860-06 -0.3040-07 -0.1200-06
0.880D+00 0.4620+00 0.3630+401 -0.444D-07 0.1620-06 =-0.168D~06 ~0.277D-06
-0.1710-06 0,2440-06 =0.444D-07 0.,5050-13 -0.155D~15 0.390D-15 0.,351D~15
0.4030-06 0.286D~06 0.1620-06 ~0,155D-15 0.856D~13 -0.8840~14 ~0,284D-13
-0,3390-07 ~0.304D-07 ~0.168D-06 0.390D0-15 -0.884D-14 0.431D-13 0.740D-14
-0.134D-06 -0,1200-06 —0.2770-06 0.3510~15 ~0.2840~13 0,740D-14 0.,5250-13
COEFFICIENTS OF CORRELATION

0.1000+401 0.154D+00 0,2420+400 —0.3980+00 0.7200400 ~0.855ND~01 ~0.3020+00
0.154D+00 0.100D+01 0.137D+00 0.612D+00 0.551D+00 ~0.5250-01 —-0.2920+00
0.242D+00 0.1370400 0.100D+01 -0,104D+00 0.291D+N0 =0,424D+00 =D,625D+00
~0,398D+00 0,612D+00 ~0.104D+400 0.100D+01 -0.226D-02 0,R25D-02 0.6750-02
0.720D400 0.,551D+00 0,2910+00 =0.236D0-02 0.100D+01 ~0,145D400 ~0,4200+00
~0.8550-01 -0.825D-01 ~0.424D+00 0.8350-02 ~0,145D0+400 0,1000+01 0.1540+00
~0.3020400 ~0,292D+00 ~0.629D+00 0.6750-02 —0.420D400 0.154D+00 0.100D+01
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Table 5.1-2 (Con't)

RESIDUALS V
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